
Hydration of Carbonyl Compounds, an Analysis in Terms of No
Barrier Theory: Prediction of Rates from Equilibrium Constants and
Distortion Energies

J. Peter Guthrie* and Vladimir Pitchko

Contribution from the Department of Chemistry, UniVersity of Western Ontario,
London, Ontario N6A 5B7, Canada

ReceiVed August 17, 1999. ReVised Manuscript ReceiVed April 11, 2000

Abstract: “No Barrier Theory” postulates that when only one thing happens there is a quadratic relation between
energy and reaction progress, with no kinetic barrier. The kinetic barrier seen with essentially all real chemical
processes results from the need for more than one thing to happen simultaneously. This approach permits
calculation of free energies of activation for covalent hydration of carbonyl compounds, over the range of
reactivity for which data are available, from formaldehyde to carboxamides. Acid- and base-catalyzed and
uncatalyzed reactions can be treated with no adjustable parameters, with root-mean-square errors of 1.41,
1.30, and 1.50 kcal/mol in free energy of activation. The method requires equilibrium constants and distortion
energies. The latter can be calculated by molecular orbital theory using relatively low levels of theory. The
calculations can be inverted to calculate equilibrium constants from experimental rate constants.

Introduction

We have devised a new approach, which we call “No Barrier
Theory”,1-3 for calculating rate constants for chemical reactions
from the experimental equilibrium constants. The approach
shows great promise of providing a general method for
calculating the rate constants for chemical reactions with no
adjustable parameters. Thus far it has been able to describe a
number of reactions with root-mean-square errors less than 2
kcal/mol for rate constants in solution.

Ab initio calculation of equilibrium constants requires very
high levels of theory, and even at the highest level currently
practical the calculations require an empirical adjustment to give
gas-phase values. Calculation of solvation energies is becoming
increasingly possible but remains difficult, as shown by recent
papers discussing the solvation of amines in water.4-6 To
determine the structure and energy of a transition state in
solution by ab initio calculations remains an extremely chal-
lenging problem. An advantage of No Barrier Theory is that
by using experimental equilibrium constants it avoids the
difficult problems of calculating bonding and solvation energies,
and requires only relatively easy calculations of distortion
energies.

Rate and equilibrium constants for the addition of water to
carbonyl compounds have been shown to follow Marcus
theory.7-10 In the accompanying paper we have examined this
reaction by applying multidimensional Marcus theory.11 With

a single value of the intrinsic barrier for carbon oxygen bond
formation and the value for proton transfer shown to work for
both water mediated proton transfers and water mediated proton
switch reactions12 we could fit all of the data for addition of
water to esters, amides, thioesters, and ketones, whether
hydroxide catalyzed, uncatalyzed, or acid catalyzed.11 Unreactive
aldehydes also fit the pattern, but hydroxide additions to the
more reactive aldehydes deviated from the pattern and had
intrinsic barriers which were linear in the equilibrium constant
for addition. The high reactivity rather than the aldehyde
functional group seems to be the key thing. The most reactive
ketones, esters, and thioesters also required lower intrinsic
barriers for the hydroxide additions, but there were so few
compounds in these families with high reactivity that no pattern
could be seen. On one hand the overall success of this approach,
with a transferable intrinsic barrier, was quite striking. On the
other hand, the finding that reactive aldehydes can only be
described by intrinsic barriers which are a function of the
equilibrium constant means that the hope of describing organic
chemistry with a limited set of transferable intrinsic barriers
has been dashed. Recently a new approach has been devised1-3

which avoids the need for intrinsic barriers, and allows the rate
constants for all of these reactions to be calculated with no
adjustable parameters. The application of this approach to
carbonyl hydration is described in the present paper.

Work in progress applying No Barrier Theory to other
families of reactions suggests that it will prove to be very
general.

Theory

The approach to be used in this paper is based on the
assumption that if only one thing happens in a chemical reaction,
there is no kinetic barrier and there is a quadratic dependence
of energy on the reaction coordinate: see Figure 1a. To progress
from the low-energy to the high-energy end of the reaction
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coordinate requires no extra energy, i.e., there is no kinetic
barrier. This flies in the face of the common experience that
for real reactions there is a kinetic barrier as illustrated in Figure
1b. This shows a kinetic barrier between the initial and final
points, so that a molecule cannot go from the lower to the higher
energy end of the reaction coordinate unless it has more energy
than the difference between the ends, i.e., unless it has the
additional energy corresponding to the kinetic barrier. For this
real reaction the corresponding quadratic function passing
through the energies of the initial and final species is a poor
approximation to the actual energy dependence on reaction
coordinate. The key is the clause “if only one thing happens”.
The common occurrence of kinetic barriers is a result of the
complexity of almost all chemical reactions which involve more
than one simple process. In the specific case of carbonyl
addition, the simple processes are bond formation to the carbonyl
carbon and geometry change from sp2 to sp3. With two simple
processes required for the observable chemical change, the
assumption that any section through the energy diagram parallel
to one of the edges will have an approximate quadratic

dependence of energy on the reaction coordinate leads to a
kinetic barrier as illustrated in Figure 2. C-O bond formation
is very often accompanied by proton-transfer processes involving
water molecules (or general acid or base catalysts). We have
found that proton transfer from oxygen to oxygen can, to a good
approximation, be treated as a simple process. These assump-
tions have been applied to enolate formation3 and to cyanohydrin
formation.2 There are abundant data for carbonyl hydration
reactions, so examination of this process constitutes a good test
of the theory. For a convenient shorthand this theory will be
referred to as “No Barrier Theory”.

No Barrier Theory follows from the following postulates:2,3

(1) Reactants are in equilibrium with starting material or
product at each point along each reaction coordinate.

(2) For any process where only one elementary reaction
coordinate changes, the energy will be a quadratic function of
the corresponding reaction coordinate.

(3) Heterolytic bond cleavage constitutes an elementary
reaction coordinate.

Figure 1. (a) A simple quadratic relationship between energy and
reaction coordinate leads to no barrier along the reaction coordinate.
(b) For most real reactions there is a barrier, which may be ap-
proximated, as here, by a quartic relationship between energy and
reaction coordinate (s); the quadratic through the same initial and final
points is a poor approximation to the actual behavior (- - -).

Figure 2. If a reaction requires two simple processes (each leading to
a quadratic relationship) both to be completed for the overall reaction
to have taken place, then the quadratic relationships in either single
dimension lead to a kinetic barrier for the real, two-dimensional process.
(a) A perspective drawing of the three-dimensional energy surface. (b)
A projection of the same surface along the geometrical distortion
dimension: (9) location of the transition state.
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(4) For an anion to react at a carbon center, it must first
undergo partial desolvation so that its reactive lone pair can be
in van der Waals contact with the carbon.

(5) Reaction coordinates are defined to run from 0 to 1.
That the energy cost of geometrical distortions should show

a quadratic dependence on the reaction coordinate, interpreted
as a suitable angle, will seem unexceptionable, since this is the
behavior on which molecular mechanics is based.13 That a
similar “force law” should apply to bond breaking/bond making
processes seems less intuitively reasonable. However, it is
commonly accepted that for simple bond breaking (as in
diatomic molecules) the energy should follow a Morse curve,
which relates energy to bond length. If we transform from bond
length to bond order using the Pauling relation, then the Morse
curve is transformed into a quadratic in bond order. Thus with
suitable choice of reaction coordinates, all “simple” one-thing-
at-a-time processes should give quadratic “force laws”.

To apply No Barrier Theory to these reactions, we need
detailed models for the mechanisms. We have used general
models which should cover all levels of reactivity. This means
that the more elaborate models required in some cases are
assumed at the beginning for all the molecules. Each particular
system can choose to follow a simpler path, which will be a
subset of the full model.

As part of creating such a model we must consider possible
partial desolvation events. We assume that any carbonyl oxygen
with a δ- charge will be surrounded by sufficient waters with
hydrogens directed at it to provide full hydrogen bonding
solvation if it becomes O-. However, if the oxygen is initially
protonated, it will be surrounded by water oxygens, with no
water hydrogens pointed at it. Thus if it becomes an OH, it
will initially be missing two hydrogen bonds worth of solvation.
(We use an admittedly oversimplified model where each atom
to be solvated is tetrahedrally surrounded by solvent or bonded
atoms.) If a carbonyl oxygen is initially hydrogen bonded to
hydronium ion but not protonated, then we assume that the
oxygen still bears aδ- and is hydrogen bonded by two waters
as well as hydronium ion, and thus when it becomes OH it will
be fully solvated. These assumptions are not the same as in a
recent paper on cyanohydrin formation2 but reflect recent
theoretical studies on solvation which show that carbonyl
oxygens are very likely to have three solvating waters with
hydrogens directed at the oxygen.14-19 A hydroxide next to a
carbonyl group is necessarily missing one hydrogen bond to
solvent if it is to have a lone pair ready to attack the carbonyl;
this imposes a partial desolvation energy. The energies of these
desolvation events were estimated as described previously.11

The model for hydroxide addition is shown in Figure 3. In
this figure, as for all the models discussed, we show the reaction
diagram, in this case a cube, and below it, vertically displaced
but in the same relative orientation, the structures corresponding
to each corner. It was necessary to do this rather than putting
the structures near the actual corners to avoid clutter in the

higher dimensional diagrams. The simple processes which are
used as reaction coordinates are the following in the present
case: (000-001) proton transfer from water to hydroxide
leading to a partly desolvated hydroxide next to the carbonyl
carbon; (000-010) C-O bond formation, leading to a zwitter-
ionic hydrate; and (000-100) geometry change at the carbonyl
carbon, from sp2 to sp3. A third hydrogen-bonded water is
assumed to be in contact with the carbonyl oxygen through the
π-molecular orbital. Although this hydrogen bond is weak it is
assumed to be present a significant fraction of the time so that
the free energy cost of forming it is negligible. This model
requires a cubic reaction diagram.

Two models were explored for uncatalyzed hydration. In the
first there are two water molecules, one acting as a nucleophile
and the other as a general base. The zwitterion is often (though
not always) more acidic than hydronium ion, so that this proton
transfer is expected to be essentially barrierless if the hydrogen
bond is in place. In the other the transition state is cyclic with
three water molecules, one acting as nucleophile and the other

(13) Bond length distortions might also be considered but to date
we have found no cases where consideration of bond length changes
accompanying but separate from bond formation/breaking is necessary
or helpful in describing a reaction.
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Figure 3. Cubic reaction diagram for hydroxide addition to carbonyl
compounds.
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two in a hydrogen-bonded chain bridging the nucleophilic water
to the carbonyl oxygen, so that the product is the neutral
carbonyl hydrate.

The first model, with two water molecules, is shown in Figure
4. This process leads to the anionic form of the hydrate, though
this will recombine with hydronium ion as soon as the latter
can diffuse around to do so. Consequently the calculation used
distortion energies calculated for the anion of the hydrate. This
process requires a reaction cube.

The second model, the cyclic mechanism involving three
water molecules, is shown in Figure 5. The five major atoms
are arranged in a fashion analogous to the envelope conforma-
tion of cyclopentane. This model requires a five-dimensional
hypercube reaction diagram. Such a hypercube is difficult to

draw in two dimensions and difficult to interpret once drawn.
The best we have been able to devise is to take two four-
dimensional hypercubes displaced diagonally from each other
and to join the corresponding corners. This is in effect a
representation of a five-dimensional hypercube. It is unsatisfac-
tory because the dimensions to not look equivalent as they ought
to, but at least it is usable. Structures corresponding to the 32
corners are drawn below the two four-dimensional sections of
the hypercube, i.e., (0xxxx) and (1xxxx). For both the four-
and five-dimensional hypercubes it was necessary to draw the
structures in two groups for each four-dimensional hypercube,
again to avoid clutter. The corner structures for the top and
bottom cubes for each hypercube are drawn in position, but
slightly shifted to provide room for them while retaining a
regular arrangement. The two subcubes are distinguished by
the value of they-coordinate.

Finally the model used for acid-catalyzed hydration is shown
in Figure 6. This model is more elaborate than is needed in all
cases, but should include all compounds. In some cases the
reaction may involve fully protonated carbonyl compound as
starting point, but in most cases the protonated carbonyl
compound is more acidic than hydronium ion so that proton
transfer to a hydrogen-bonded water would be essentially
barrierless. This process requires a four-dimensional reaction
hypercube.20

With all of these models the input parameters for the
calculation of the transition state energy are the free energies
of the corner intermediates. For each model the energies of all
of the corner intermediates must be calculated. This is done by
taking account of the equilibrium constant for C-O bond
formation (when this has happened), the energy cost of any
geometrical distortion, the equilibrium constant for any proton
transfer (using the pKa values estimated as described in the
accompanying paper11), the energy contributions for any
hydrogen bonds formed when the nonsolvent species involved
in the corner intermediate come together in the geometry
specified (estimated as before12 using the Stahl-Jencks equa-
tion22), any electrostatic interactions between these species
(estimated as before12), and any desolvation costs involved in
generating the actual species (estimated as described above).
The detailed calculations used, which in effect calculate the
Marcus work term, are the same as for the application of
Multidimensional Marcus Theory to these hydration reactions,
and are described in more detail in the accompanying paper.11

The only difference in the present case is that the C-O bond-
making process becomes two reaction dimensions rather than
one so that twice as many corner intermediates are required for
each mechanism.

Distortion energies were calculated by Molecular Orbital
Theory at various levels (AM1, HF/3-21+G*, B3LYP/
3-21+G*) using Gaussian 94.23 The carbonyl compound and
its neutral and anionic hydrates were fully optimized at each
level of theory. In the anionic hydrate ofS-ethyl thiolformate it
was necessary to lock the C-S bond length to prevent the

(20) This representation of a hypercube was used by Gamow.21

(21) Gamow, G.One, two, three ... infinity: facts & speculations of
science; Viking Press: New York, 1961.

(22) Stahl, N.; Jencks, W. P.J. Am. Chem. Soc.1986, 108, 4196-4205.
(23) Gaussian 94, Revision E.1, M. J. Frisch, G. W. Trucks, H. B.

Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T.
Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-
Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B.
B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala,
W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L.
Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M.
Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc.: Pittsburgh,
PA, 1995.

Figure 4. Cubic reaction diagram for addition of water to carbonyl
compounds, assuming that one water acts as a nucleophile and a second
water acts as a general base.
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molecule from falling apart. Partial optimizations for distorted
forms of the neutral and anionic carbonyl compounds were
carried out with bond angles and dihedral angles for the atoms

attached to the carbonyl carbon locked at the values in the
corresponding neutral or anionic forms of the hydrate. Partial
optimizations for the distorted forms of the neutral and anionic

Figure 5. Five-dimensional hypercube diagram for addition of water to carbonyl compounds, assuming a cyclic mechanism involving three water
molecules.
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hydrates were carried out with the bond angles and dihedral
angles describing the bonds from the reaction center to the atoms
present in the neutral carbonyl compound locked at the values

in that compound, and the bond to the nucleophile locked at
the length in the optimized form of the corresponding hydrate,
with angles and dihedrals locked at the values corresponding
to perpendicular attack. Esters, thioesters, and their protonated
forms were assumed to be in the S-trans conformations. Addition
of water to carbonyls was assumed to proceed with anti
stereochemistry where there were substitutents on the atom
initially doubly bonded to carbon which defined the stereo-
chemistry. Distortion energies were calculated as the difference
in energy between a distorted species and the corresponding
form with optimized geometry.

The method we are using to calculate rate constants for
reactions involves breaking a real reaction into a series of
elementary reactions simple enough to follow a quadratic law
for energy vs reaction coordinate. Thus all distortions should
be relative to the final product or initial starting material.

In terms of the acid-catalyzed reactions this has the following
consequences in terms of how distortions should be calculated.
The reaction is presumed to run from neutral starting material,
hydrogen bonded to hydronium ion, to neutral product, hydrogen
bonded to hydronium ion.

The base-catalyzed reaction runs from neutral starting material
to anionic hydrate. The results are best if the anionic hydrate is
allowed to optimize, including allowing the C-OH bond to
lengthen. For the distorted form of the hydrate this bond must
be locked at the optimized bond length from the equilibrium
hydrate anion or else the hydroxide will fall off.

The uncatalyzed reaction (noncyclic variation) runs from
neutral starting material to anionic hydrate (hydrogen bonded
to hydronium ion by the OH). The distortion energies are the
same as for the base-catalyzed reaction. The uncatalyzed reaction
in the cyclic variation runs from the neutral starting material to
the neutral hydrate. The distortion energies are the same as for
the acid-catalyzed reaction.

Various algorithms have been used to find the transition state.
The simplest one is based on projection. If one projects a two-
dimensional reaction diagram, as in Figure 2a, along one of
the reaction dimensions, which we call the “projected dimen-
sion”, as in Figure 2b, one sees the two limiting quadratics,
“front” and “back”, for the other reaction dimension, which we
call the “displayed dimension”. By the central hypothesis of
this work, the energy along the “projected dimension” at any
point on the “displayed dimension” is a quadratic linking the
points on the “front” and “back” curves. Then there is no barrier
at the value of the “displayed dimension” where the curves cross,
and the free energy is the same for any value of the “projected
dimension”. The difficulty with this simple picture is that there
are, for the two-dimensional case, two ways to do the projection,
and it may be shown mathematically that in general the
calculated transition state free energy for the two projections
will not be the same.2 The differences are not large. Numerical
exploration with a range of plausible values for the overall
energy change and the energies of the corner intermediates
showed that the difference in the two calculated transition state
energies was at most 0.6 kcal/mol in the two-dimensional case.

To overcome this difficulty one can try to deduce an analytical
expression for the surface, by melding the edge expressions in
some way. We have reported one such surface,2 and others are
possible.24 The problem with all of these surfaces is that there
is an arbitrary weighting parameter controlling how the edge
equations are melded. Numerical exploration allowed the
weighting parameter to be chosen to minimize deviations from
the idealized quadratic section behavior,2 but no general

(24) Dunn, B. M.Int. J. Chem. Kinet.1974, 6, 143-159.

Figure 6. Four-dimensional hypercube diagram for acid-catalyzed
addition of water to carbonyl compounds.
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objective criterion has been found. Furthermore, the equation
for the surface becomes increasingly complicated and difficult
to program for higher dimensions. For some plausible mecha-
nistic paths as many as six reaction dimensions are needed.
Fortunately it turned out that the energy of the transition state
found using the analytical surface corresponded more closely
to the lower of the values found by the projection approach.
Accordingly we have settled on the projection algorithm for all
cases, and used the lowest of the projected transition state
energies for the set of possible projections at a given level.

For higher dimensional cases the projection algorithm is
conceptually the same as for the two-dimensional case except
that the energy along a profile perpendicular to the “front” and
“back” quadratics of the “displayed dimension” is no longer a
curvilinear function of the one “projected dimension” as in the
two-dimensional case, but rather a surface in all of the
perpendicular dimensions, and the projected energy is no longer
the higher of the “front” and “back” curves, but may be higher
than either, depending on the nature of the surface, and
corresponds to the free energy barrier to interconversion of the
points on the “front” and “back” curves. The multidimensional
surface defining the energy has one less dimension than the
original reaction diagram. We now proceed recursively, evaluat-
ing the energy barrier by applying projection repeatedly until
we reach a two-dimensional case where energy can be deter-
mined. At each stage the lowest barrier is taken as the true one.
Thus for a three-dimensional case we pick one dimension as
the “displayed dimension” and for each point along this
dimension calculate the barrier to progression from the front to
the back quadratic of the two-dimensional reaction diagram
linking them. Then the lowest energy barrier for progression
from front to back quadratic will correspond to the transition
state for this three-dimensional reaction diagram. This is done
for all three dimensions in turn, and the lowest transition state
energy is taken as the true value.

Results and Discussion

We begin with equilibrium constants for covalent hydration
of the carbonyl compounds, either measured, or calculated
starting with free energies of formation of the carbonyl
compound and its dimethyl acetal,25 or estimated using rate
equilibrium correlations.9 The origins of these values are
documented in the accompanying paper,11 and the values are
found in Table 1 of that paper. We then estimate various pKa

values for the tetrahedral intermediates, and where necessary
for the protonated carbonyl compounds. These estimation
procedures are described in the accompanying paper,11 and the
values are found in Table A2 therein.

The results of these calculations are summarized in Tables
S1-S4.26 Calculations of distortion energies were carried out
at various levels. AM1 required much less computer time than
ab initio methods, and gave good results. Ab initio calculations
either at Hartree-Fock (3-21+G*) or DFT (B3LYP/3-21+G*)
levels gave similar but no better, and in fact often slightly poorer,
agreement between observed and calculated free energies of
activation, and required much more computer time. We conclude
that at least for these hydration reactions, AM1 is quite
satisfactory. All levels of calculation gave good agreement
between calculated and observed free energies of activation,
the root-mean-square error being in the vicinity of 1.5 kcal/
mol for each set. For all reactions considered (using the cyclic
mechanism for water addition) the root-mean-square errors (kcal/

mol) were the following: DFT 1.53, HF 1.85, AM1 1.40. For
compounds treated by all three methods, the root-mean-square
errors (kcal/mol) (for all reactions) were the following: DFT
1.47, HF 1.79, AM1 1.35.

For hydroxide-catalyzed hydration, the agreement is generally
very satisfactory, as shown in Figure 7. For all entries in Table
S1, only six show errors greater than 2 kcal/mol, and only two
are greater than 3 kcal/mol. Of these, one represents reaction
of methyl trichloroacetate, where the rate constant had to be
estimated from that for the ethyl ester,9 and the equilibrium
constant was estimated from the rate of the hydroxide reaction,
using Marcus Theory.9 It is now known that the assumption of
a transferable intrinsic barrier breaks down for highly reactive
compounds such as trihaloacetates.11 The other serious deviation
is N-methylformanilide, where the rate determining step for
hydroxide-catalyzed hydrolysis is the breakdown of the tetra-
hedral intermediate and not its formation. In this case the
deviation is not a failure of the method but a success.

For the uncatalyzed addition of water, two models were
examined, with the results shown in Tables S2 and S3 and
Figures 8 and 9. The cyclic model seems to be in better
agreement with the observed free energies of activation, since
the root-mean-square error (AM1 results) is 1.53 kcal/mol rather
than 1.74 kcal/mol for the general base catalysis mechanism,
and the average signed error27 is -0.49 kcal/mol rather than
-1.00 kcal/mol. Both models have a tendency to give calculated
free energies of activation which are too low, but this is more
serious for the general base model. This is awkward, because
the assumptions of No Barrier Theory lead to the conclusion
that the lowest calculated barrier will be the correct one.
However, for all of the values calculated at the AM1 level, the
root-mean-square difference between the two models is 1.73
kcal/mol, and much of this comes from the least reactive

(25) Guthrie, J. P.Can. J. Chem.1975, 53, 898-906.
(26) These tables are available as Supporting Information.

(27) This is the simple average of calculated- observed free energy of
activation, and should be zero if there were no systematic error. The negative
values obtained imply calculated free energies of activation which are too
low.

Figure 7. Calculated vs observed values of∆Gq for the hydroxide-
catalyzed hydration of carbonyl groups: (b) AM1 calculation of
distortion energies; (9) HF/3-21+G* calculation of distortion energies;
(2) B3LYP/3-21+G* calculation of distortion energies; and (O) AM1
calculation of distortion energies forN-methylformanilide, for which
addition is not the rate determining step for hydrolysis.
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compounds. For all compounds except amides, the root-mean-
square difference is 0.93 kcal/mol, which is less than the
uncertainty in the method, taken as the root-mean-square
deviation seen for reactions with unambiguous models; this is
generally 1.5-2.0 kcal/mol.

In fact there is little to choose between the models for
aldehydes and ketones, though the general base model tends to
give lower free energies of activation, and for these compounds
the root-mean-square difference is 0.90 kcal/mol. However, for
esters, thioesters, and amides the cyclic model most often leads
to the lower predicted free energies of activation. Our calcula-

tions support the cyclic model for less reactive compounds, but
do not give clear support for either with more reactive
compounds. If anything, the two water, general base model is
better for these substrates, but the differences are less than the
inherent uncertainty in the method. For amides there are very
few data for uncatalyzed hydrolysis, but the two recent reports
of rate constants for amide hydrolysis at neutral pH, for resin
bound-Phe-Phe-Phe- - -Gly,∆G* ) 29.09 kcal/mol,28 or for
N-Ac-Gly- - -Gly, ∆G* ) 31.71 kcal/mol,29 are close to the
values calculated here for DMF or DMA using the cyclic model
and much lower than the values calculated for the general base
model.

For acid-catalyzed hydration the agreement between observed
and calculated∆Gq is slightly poorer than that for the other
pathways, as shown in Table S4 and Figure 10. This may reflect
the imperfectly known pKBH+ values for these substrates, which
generally fall in theHo region where there are strong activity
coefficient effects, and for which correction to water as the
standard state is still imperfect.

The process of calculating free energies of activation from
equilibrium free energy changes can be inverted to allow calcu-
lation of equilibrium free energy changes from free energies of
activation and distortion energies. This is indeed possible and
the exercise is instructive. Table S526 shows the results of this
calculation, using rate data for hydroxide-catalyzed hydration.
The quality of the estimated equilibrium changes depends on
the magnitude of the equilibrium free energy change,∆G°, as
shown in Figure 11. For positive values of∆G°, the estimated
values are close to those determined experimentally; the more
negative∆G° is the less reliable the estimated values become.
This is a consequence of the nature of the presumed Marcus
relation between free energy of activation and equilibrium free
energy change.

(28) Kahne, D.; Still, W. C.J. Am. Chem. Soc.1988, 110, 7529-7534.
(29) Radzicka, A.; Wolfenden, R.J. Am. Chem. Soc.1996, 118, 6105-

6109.

Figure 8. Calculated vs observed values of∆Gq for the uncatalyzed
hydration of carbonyl groups, by the two water molecule (general base)
mechanism: (O) AM1 calculation of distortion energies; (0) HF/
3-21+G* calculation of distortion energies; and (4) B3LYP/3-21+G*
calculation of distortion energies.

Figure 9. Calculated vs observed values of∆Gq for the uncatalyzed
hydration of carbonyl groups, by the three water molecule (cyclic)
mechanism: (O) AM1 calculation of distortion energies; (0) HF/
3-21+G* calculation of distortion energies; and (4) B3LYP/3-21+G*
calculation of distortion energies.

Figure 10. Calculated vs observed values of∆Gq for the acid-catalyzed
hydration of carbonyl groups: (O) AM1 calculation of distortion
energies; (0) HF/3-21+G* calculation of distortion energies; and (4)
B3LYP/3-21+G* calculation of distortion energies.

∆Gq ) G̃(1 + ∆G°/4G̃)2
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From which it follows:

Thus negative values of∆G° are unlikely to be calculated with
useful precision from the observed∆Gq because the slope
relating them is small and therefore large changes in∆G° are
needed to make small changes in∆Gq; conversely positive
values of∆G° are likely to be calculated with useful precision
from the observed∆Gq because the slope relating them is
approaching unity. A factor which accentuates the effect of
greater sensitivity at negative∆G° is thatG̃ falls for such values
of ∆G° although it is approximately constant for positive∆G°.
The result is that the root-mean-square error is 1.44 kcal/mol
when ∆G° > 0, 2.10 kcal/mol for-4 < ∆G° < 0, and 3.89
kcal/mol for∆G° < -4. This analysis has the happy result that
where calculation of∆G° from ∆Gq is least likely to work, direct
measurement is most likely to be possible, while where the
calculation is most likely to work, direct measurement is likely
to be difficult, and evaluation, if it is possible at all, will require
indirect extrathermodynamic approaches. Thus the method is
most useful where it is most needed, and should prove a valuable
tool wherever the mechanism is well-known, and a tested
mechanistic model is available.

The reported rate constant for uncatalyzed hydration of
fluoroacetone is surprising because it is considerably faster than
the analogous value for chloroacetone. Since theσ* values are
essentially identical and there should be no serious steric effects
with only one substitutent added to acetone, one would have
expected rather similar rate constants. The predicted values are
in fact rather similar. An examination of Taft plots for
haloketones and methyl haloacetates suggested that the reported
rate constants for both chloroacetone and fluoroacetone were
anomalously fast.11

Conclusions

The primary message from this investigation is that the
method of calculating rate constants following No Barrier
Theory works very successfully for a wide range of carbonyl
compounds. Extensive tests have been carried out with a
substantial body of data, spanning a wide range in reactivity
and considerable variation in functional group. In particular we
were able to treat hydroxide addition to all carbonyl compounds
with no adjustable parameters, where Marcus Theory required
variable intrinsic barriers, and thus multiple adjustable param-
eters, for the same data set. In effect No Barrier Theory provides
a means to calculate the Marcus intrinsic barrier for reactions
in solution. In principle such barriers could be calculated for a
few examples and then used for similar reactions when the
approximation of transferable barriers seemed likely to hold.

No Barrier Theory allowed calculation of free energies of
activation for a wide range of carbonyl hydration reactions with
a root-mean-square error of 1.5 kcal/mol or less for either AM1
or B3LYP/3-21+G* calculation of distortion energies or of 1.9
kcal/mol for HF/3-21+G* level calculations. This means that
rate constants can be calculated with enough precision to be of
practical use, provided only that the equilibrium constant is
known or can be estimated.

It is known that AM1 suffices for approximate calculation
of vibrational frequencies30 so it is perhaps not surprising that
it works well in the present case to calculate distortion energies
which are closely related to vibrational frequencies.

The method shows promise in the reverse sense, for calculat-
ing equilibrium constants from rate constants where the equi-
librium constant is unfavorable. Such attempts to extract
equilibrium constants from rate data require that the mechanism
be well understood.

Our results do not resolve the issue of the cyclic vs noncyclic
mechanisms for uncatalyzed hydration but clearly support the
cyclic mechanism for reactions where the addition is difficult.
Experimental investigations leading to proposals of the cyclic
mechanism have often involved reactive compounds (formal-
dehyde, dichloroacetone, chloral), admittedly in mixed aqueous
organic solvents.

No Barrier Theory has been shown to work for an extensive
series of proton-transfer reactions over a wide range of reactivity
for C-H acids,3 and now for carbonyl hydration reactions over
a wide range of reactivity. The approach seems likely to be
very generally applicable. Further investigations of other classes
of reactions are under way, and will be reported in due course.
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Figure 11. Error in calculated∆G° as a function of∆G°corr. The
absolute error is plotted and average values for two ranges of∆G°corr

are shown.∆G°corr is the free energy change for reaction leading from
the solvent-separated encounter complex of hydroxide with a carbonyl
compound to the carbonyl hydrate anion; see Table S11.

(d∆Gq/d∆G°) ≈ 0.5 for |∆G°| small

(d∆Gq/d∆G°) ≈ 1.0 for∆G° large and positive

(d∆Gq /d∆G°) ≈ 0.0 for∆G° large and negative
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